
Lecture 3 - Outline
•  Dependence analysis

–  Data dependence
–  Control dependence

•  Program Dependence Graph (PDG) representation
of code (intraprocedural)

•  System Dependence Graph (SDG) representation
of code (interprocedural)

•  References:
•  Ferrante, et.al., “The Program Dependence Graph and Its Use in

Optimization, TOPLAS, July 1987
•  Cytron, Ron; Ferrante, Jeanne; Rosen, Barry K.; Wegman, Mark N.; and

Zadeck, F. Kenneth (1991).
"Efficiently computing static single assignment form and the control
dependence graph" (PDF). ACM Transactions on Programming Languages and
Systems 13 (4): 451–490. doi:10.1145/115372.115320

8/31/2015	 CS6304	 BGR	 1	

Data Dependence
•  Def-use relations define a data dependence

•  i.e., a flow from a write to a read of the value written
•  A “may” relation -- means the value at the read (use) may

have been written by the write (def) OR may have been
written by another write.

•  The order of execution of writes must
preserve data dependence relations

8/31/2015	 CS6304	 BGR	 2	

8/31/2015	 CS6304	 BGR	

Control Dependence

•  Node Y is control dependent on node X means
there is a logical test at X whose outcome
determines if Y is executed.

•  Y postdominates Z iff every execution path
from Z to program exit includes Y (analogous
to domination on the reverse control flow
graph)

•  Y can only be control dependent on a node it
does not postdominate

X

ρ	

exit Z1
Z2

Y

Y is control dependent on X

3	

Intuition by Example

8/31/2015	 CS6304	 BGR	 4	

read(n); k := 1; sum := 0;
product := 1;
while k<= n do
{ sum := sum + k;
 product := product * k;
 k := k + 1;}
write (sum);write (product);

Think about what decisions in the program control the execution
of various statements.
The blue statements are always executed whenever this program
is executed.
The red statement is executed at least once.
The orange statements are executed depending on the value of the loop test.

8/31/2015	 CS6304	 BGR	

Control Dependence

X,Y ∈ N(CFG)
Y is control dependent on X iff

 (i) ∃ path from X to Y (X, Z_1, Z_2,...,Z_k, Y)
such that ∀ Z_i, Z_i ≠ X, Z_i is postdominated
by Y, and
 (ii) X is not postdominated by Y 	

Idea: the predicate evaluated at X determines
if Y executes, so once you know that X
executes, you know if Y executes

5	

8/31/2015	 CS6304	 BGR	

Control Dependence - Example

7	

6	 3	 1	

4	 5	 2	

Postdominator Tree

0	

1	

2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 3	

4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 5	

6	

7	 Control flowgraph

Here nodes 5,6 are both
control dependent on 3,
but 7 is not.

exit	

exit	

6	

8/31/2015	 CS6304	 BGR	

Properties

•  Relation is not unique
–  Y can be control dependent
on more than one other CFG node
–  Y is control dependent on both
W and X

ρ	

X
W

Z1

Z2

Y

CFG path

CFG edge

7	

8/31/2015	 CS6304	 BGR	

Properties

•  Relation is not transitive.
–  X is control dependent on Y, Y is control

dependent on Z, but X is NOT control dependent
on Z since X does not postdominate Y.

Z

Y

X

8	

8/31/2015	 CS6304	 BGR	

Control Dependence Algorithm
•  Intuition: look for CFG edges such that the target

node does not postdominate the source node, then
use the postdominator tree to find control
dependences.

•  Algorithm
1.  Find postdominators on CFG
2.  Form candidate edge set, S = { (X, Z) ∈ G | Z is not an

ancestor of X in the postdominator tree}
3.  Find X and Z in postdominator tree (all ancestors of Z in

tree postdominate Z)
 Find all nodes that postdominate Z but not X, {Y_i}.
 Z and {Y_i} are all control dependent on X.

9	

8/31/2015	 CS6304	 BGR	

Illustration
Find X and Z in postdominator tree;
(X,Z) is candidate edge;
all ancestors of Z in tree postdominate Z.
Find all nodes that postdominate Z
but not X, {Yi}.
Then Z and {Yi} are
control dependent on X.

X

Z

Y1

Y2
W = lca (X,Z)
in postdominator
tree

Z

W

X Y2

Y1

exit

10

8/31/2015	 CS6304	 BGR	

Postdominators
•  Calculated on reverse CFG (same nodes, all

edges reversed in direction) by fixed point
iteration
Pdom (exit) = {exit} /* unique exit node */
for n ∈ N - {exit} do

 Pdom (n) = N /* Max FP calculation */
while some Pdom(n) changes do
{ for n ∈ N - {exit} do

 Pdom(n) = {n} ∪ {∩ Pdom(j) }
 j ∈ pred(n)}

•  Forward dataflow problem on reversed CFG,
meet semilattice

•  Reflexive relation

11	

8/31/2015	 CS6304	 BGR	

Validation
•  Claim: Given (X,Z) candidate edge in CFG, the

least common ancestor(X,Z) in postdominator
tree is X or parent(X). (Ferrante, et.al., “The Program
Dependence Graph and Its Use in Optimization, TOPLAS, July 1987)
Proof: Let W= parent(X) in postdom tree. W ≠ Z

because X not postdominated by Z. Assume W does
not postdominate Z. Then ∃ path from Z to exit not
containing W. But then adding (X,Z) to that path,
creates a path from X to exit not containing W.
CONTRADICTION.

Therefore, W postdominates Z.
Therefore, W is ancestor(Z) in postdom tree.
Therefore, W or X is least common ancestor (X,Z) in

postdom tree. qed.
12	

8/31/2015	 CS6304	 BGR	

Case 1
First case: if parent(X) = lca(X,Z), all

nodes on postdom tree path
(parent(X), Z] are control
dependent on X.
5 and 6 control dependent on 3

0	

1	

2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 3	

4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 5	

6	

7	

exit	

7	

6	 3	 1	

4	 5	 2	

exit	

13	

8/31/2015	 CS6304	 BGR	

Case 2: Loops
X

Z

Y_1

Y_k-1

while loop

X

Y_k

Y_k-1

Y_1

Z

postdominator subtree

Y_k

lca(X,Z) =X, and Z does not
postdominate X.
Z,Y_1,...,Y_k are all control
dependent on X.

Second case:
 if X = lca(X,Z) all nodes on
postdom tree path (X, Z]
are control dependent on X.

14	

8/31/2015	 CS6304	 BGR	

Example start

1

2 3

4
5

6

7

exit

entry

CFG

exit

7

6 3 1

2
start

entry

4 5

Find all edges (X,Z) st Z does
not postdominate X.
(1,2) mark {2,6 } cd on 1.
(1,3) mark { 3 } cd on 1.
(2,4) mark { 4 } cd on 2.
(2,5) mark { 5 } cd on 2.
(3,5) mark { 5,6 } cd on 3.
(entry,start) mark {start,1,7} cd on
entry.

15	

Example at Board

8/31/2015	 CS6304	 BGR	 16	

8/31/2015 CS6304 BGR	

Program Dependence Graph

•  A data structure that removes unnecessary
sequential flow of control from a program

•  Nodes are computations (e.g., statements)
•  Edges connect computations along immediate

def-use dependences and along immediate
control dependences
•  Historically was used for automatic

parallelization, but also uncovered relevant
relations to slicing
•  Allows easier tracing of how values flow through

a program – related to security information flow
problems

17	

Example

8/31/2015	 CS6304	 BGR	 18	

read(n); k := 1; sum := 0;
product := 1;
while k<= n do
{ sum := sum + k;
 product := product * k;
 k := k + 1;}
write (sum);write (product);

1	 	

4	 	

3	 	

2	 	

4	 	

1	 	

3	 	 2	 	

Postdom tree CFG

8/31/2015 CS6304 BGR	

PDG of Example
entry

read(n);

k:=1;

sum := 0;

product:=0;

while (k<=n)

write(sum);

write(product);

sum:=sum+k: product :=
 product*k;

k:=k+1;

Control dep

read(n); k := 1; sum := 0;
product := 1;
while k<= n do
{ sum := sum + k;
 product := product * k;
 k := k + 1;}
write (sum);write (product);

F. Tip, “A Survey of Program Slicing Techniques”, Journal
Of Programming Languages,1995

19	

8/31/2015 CS6304 BGR	

PDG of Example
entry

read(n)

k:=1;

sum := 0;

product:=1;

while (k<=n)

write(sum);

write(product);

sum:=sum+k: product :=
 product*k;

k:=k+1;

Control dep
K’s Data dep

read(n); k := 1; sum := 0;
product := 1;
while k<= n do
{ sum := sum + k;
 product := product * k;
 k := k + 1;}
write (sum);write (product);

Tip, JPL’95

20	

8/31/2015 CS6304 BGR	

Horwitz-Reps-Binkley Slicing
•  Introduced new interprocedural program

representation -- System Dependence Graph
(SDG) from the PDGs of each procedure
•  Compute interprocedural summary info, adding summary

edges to SDG between input and output params
•  In 2 passes, extract interprocedural slices from an SDG

•  Modeled parameter passing by call by value-
result

•  Key idea: how to walk the graph so as to avoid
infeasible interprocedural paths

Horwitz, Reps, Binkley, “Interprocedural Slicing Using Dependence
Graphs”, TOPLAS, Jan 1990, vol 12, no 1

21	

8/31/2015 CS6304 BGR	

SDG
•  Formed from PDGs for each procedure and main

–  Intraprocedural
•  Added actual-in, actual-out vertices for parameters

control dependent on the call-site vertex
•  Added formal-in, formal-out vertices control dependent on

procedure entry vertex
–  Interprocedural

•  Entry vertex of callee is control dependent on call-site
vertex

•  Param-in edge between actual-in and formal-in vertices
•  Param-out edge between actual-out and formal-out vertices
•  Summary edges representing transitive interprocedural

data dependences

22	

8/31/2015 CS6304 BGR	

Following static execution paths
using the SDG

•  Assume start at vertex x
•  Find all vertices from which x can be reached

without descending into procedure calls
•  Find all remaining vertices by descending into

all previously encountered procedure calls, but
not ascending up into callers.

23	

8/31/2015 CS6304 BGR	 24	

Horwitz,
Reps,
Binkley,
TOPLAS
Jan 1990

Step 1:
SDG w.
control dep &
data-dep edges

8/31/2015 CS6304 BGR	

Horwitz,
Reps,
Binkley,
TOPLAS
Jan 1990

Step 2:
SDG w.
summary edges
between params

25	

